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Abstract
The time-dependent current flowing through a T-shaped double quantum dot is theoretically
studied via nonequilibrium Green’s function methods. Quantum coherent ringing or beats can
appear in the transient current after a bias voltage is turned on or off, and their periods can be
tuned by the pulse bias or the interdot coupling strength. In the weak interdot coupling case no
quantum beat is observed and only quantum ringing appears in the current, the frequency of
which depends on the pulse bias. In the strong interdot coupling case, quantum beats appear in
the current and their frequency depends on the interdot coupling strength. Quantum beats are
suppressed greatly by the large energy difference between the two quantum dots. In addition,
quantum ringing and beats tend to disappear with increasing temperature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, the quantum transport property of quantum dot
(QD) systems has become an active research field due for
both purely fundamental reasons and possible applications in
nanoelectronic devices. When an external ac field is applied to
a QD system, the quantum transport becomes time dependent
and one of the essential features is the well-known photon-
assisted tunneling (PAT). Observations of PAT in single QD
systems have been reported experimentally [1–3]. The electron
can tunnel through the system by emitting or absorbing
multiple photons, and then new inelastic tunneling channels
are opened. Recently, the time-dependent current through a
QD in the Kondo regime with strong Coulomb interaction has
been theoretically studied, and the current has been shown
to significantly depart from the noninteracting one and the
Kondo resonance appears at the Fermi energy [22]. Another
important issue is how fast a device can turn a current on (or
off) under an ac signal due to the need to design a viable
switching device [4]. Since the step or pulsed ac signals
can provide a less ambiguous measure of timescales, time-
dependent transport under a pulsed field was studied in a
single QD [5–9] or nanostructure [10, 11]. Quantum coherent

ringing (oscillations) of the current flowing through a QD
was predicted after a bias voltage is turned on [7–10]. In
addition to quantum coherent ringing, quantum beats of the
spin-dependent current through a QD with Zeeman split levels
were also predicted [12].

As well as the single QD system, parallel-coupled double
quantum dot (DQD) systems have also been studied [13–15].
The interference effect between QD1 and QD2 plays an
important role, and the linear conductance has an asymmetric
line shape of the Fano resonance. Time-dependent tunneling
through coupled DQDs in series has received a large
amount of attention both experimentally and theoretically.
Experimentally, the PAT current through serially-coupled
DQDs has been observed, and the predicted extra resonance
peaks under microwave irradiation are clearly seen [16, 17].
Theoretically, studies of the PAT in serially-coupled DQDs
predicts that the photon response of the system will exhibit
satellite resonance peaks due to PAT processes [18, 19], and
a pumping current will also be found [20]. The main feature
of the transport is that the electron keeps the phase coherence
when traversing through the device in the nanometer scale. The
phase of the tunneling electrons can be affected differently
when the time-dependent field is applied in different parts of
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the system. Other quantum structures, such as a side-coupled
quantum dots, have also been reported in experiments [21].

However, the transport properties with the interplay of
the ac field and quantum interference in a T-shaped DQD
device have not been fully investigated. Therefore it is the
purpose of this paper to study the time-dependent current
through a T-shaped DQD connected with two normal leads.
For simplicity, the Coulomb interaction is neglected. In the
Coulomb blockade regime with low Coulomb interaction the
current is qualitatively similar to the noninteracting result [22].
The effects of the pulsed bias on the interference of the current
in the DQD system are explored. The transient transport is
driven by a pulsed bias potential V (t). For simplicity, the
ac pulsed bias is only added in the two leads. We consider
two different pulsed biases: (i) upward pulse with VL =
VR = 0 for t < 0 and VL = −VR = V otherwise;
(ii) downward pulse with VL = −VR = V for t < 0 and
VL = VR = 0 otherwise. By using the nonequilibrium
Green’s function method, the time-dependent current driven
by the ac pulse can be calculated. We find that the oscillation
behavior of the current has a clear dependence on the pulse
bias and the interdot coupling strength. For the weak interdot
coupling case, the rising and falling processes are symmetric
in the linear bias regime, while quantum ringing in the time-
dependent current appears for a large bias. For the strong
interdot coupling case, the interference process is important
and the current in the system shows the quantum beat. The
quantum beat tends to disappear for large energy differences
and high temperature.

The rest of this paper is organized as follows. In section 2,
the theoretical formula for calculating the time-dependent
current in the T-shaped DQD system is presented. In section 3,
we show the numerical results along with some discussions.
Finally, a brief summary is given in section 4.

2. Physical model and formula

In the T-shaped DQD structure, a central QD1 is connected
to the two normal-metal leads while a side QD2 is coupled
only to the central one. The Hamiltonian of the system can be
described as follows:

H =
∑

α=L,R

Hα + HD + HT, (1)

with
Hα =

∑

k

εα,ka†
α,kaα,k, (2)

HD =
∑

i=1,2

εi d
†
i di − (tcd†

1 d2 + h.c.), (3)

HT =
∑

α,k

tαd†
1 aα,k + h.c. (4)

Hα (α = L, R) describes the left and right normal-metal leads.
HD models the T-shaped double quantum dots where d†

i (di )
represents the creation (annihilation) operator of the electron
with energy εi in QDi (i = 1, 2). tc denotes the interdot
coupling strength. HT represents the tunneling coupling
between the QD and leads, and the tunneling matrix elements

are set as tα. Under the adiabatic approximation [7, 8], the
external time-dependent bias potential can be reflected in the
single-electron energy εα,k(t) which can be separated into two
parts: εα,k and Vα(t), where εα,k is the time-independent
single-electron energy and Vα(t) is the time-dependent part
from the external time-dependent bias potential. Vα(t) is the
step-like pulse with two different types: (i) upward pulse with
VL = VR = 0 for t < 0 and VL = −VR = V otherwise;
(ii) downward pulse with VL = −VR = V for t < 0 and
VL = VR = 0 otherwise.

Using the Keldysh equation and the analytic continuation
theory, the time-dependent current Iα from the α lead to the
central region can be expressed in terms of the dot’s Green’s
function as [7, 23]

Iα(t) = 2

h̄
Re

∫
dt ′[G<(t, t ′)Σa

α(t
′, t) + Gr(t, t ′)Σ<

α (t ′, t)].
(5)

The Green’s functions are defined as Gr(t, t ′) = −iθ(t −
t ′)〈{�(t),�†(t ′)}〉 and G<(t, t ′) = i〈�†(t ′)�(t)〉 with the
operator � = (d†

1 , d†
2 )†. Thus, the Green’s function Gr,<

and the self-energy Σ<,a are all two-dimensional matrices in
the DQD system. Under the wide-band approximation, the
retarded self-energy due to the α lead can be derived as

Σr
α(t, t ′) = − i

2
δ(t − t ′)Γα = − i

2
δ(t − t ′)

(
�α 0
0 0

)
, (6)

where �α is the coupling between the QD and the α lead
defined by �α = 2πραt∗

α tα with ρα being the density of states
of the α lead. The advanced self-energy can be obtained from
the relation Σa

α = (Σr
α)†. Similarly, the smaller self-energy

due to the α lead can be derived as

Σ<
α (t, t ′) = i

∫
dε

2π
exp

[
−iε(t − t ′) − i

∫ t

t ′
dt1Vα(t)

]

× fα(ε)Γα, (7)

where fα(ε) = 1/(e(ε−μα)/kB T + 1) is the Fermi distribution
function of the α lead. With the self-energy obtained above,
the lesser Green’s functions can be calculated by using Keldysh
equation G<(t, t ′) = ∫

dt1
∫

dt2Gr(t, t1)Σ<(t1, t2)Ga(t2, t ′),
where Ga = (Ga)† and Σ<(t1, t2) = ∑

α Σ<
α (t1, t2). The

Green’s function Gr(t, t ′) is the Fourier transformation of
Gr(ε) with Gr(t, t ′) = ∫

dε
2π

exp[−iε(t − t ′)]Gr(ε). Gr(ε)

can be derived from the Dyson equation Gr(ε) = [gr−1(ε) −
Σr(ε)]−1, where gr(ε) is the Green’s function of the DQD
system without the coupling to the leads

gr(ε) =
(

1
ε−ε1+i0+ 0

0 1
ε−ε2+i0+

)
, (8)

and Σr = ∑
α Σr

α . Substituting the retarded (advanced)
Green’s function and the lesser self-energy into the Keldysh
formula and after some algebraic calculations, we can obtain

G<(t, t ′) =
∫

dt1

∫
dt2Gr(t, t1)Σ<(t1, t2)Ga(t2, t ′)

= i
∫

dε

2π

∑

α

fα(ε)Aα(ε, t)ΓαA†
α(ε, t ′), (9)

2



J. Phys.: Condens. Matter 21 (2009) 265501 H Pan and Y Zhao

where

Aα(ε, t) =
∫

dt ′ exp

[
iε(t − t ′) + i

∫ t

t ′
dt1Vα(t)

]
Gr(t, t ′).

(10)
With the retarded and lesser Green’s functions, the current
becomes [8, 9, 24]

IL(t) = − e

h̄

∫
dε

2π
Tr

{
2 fL(ε) Im[ΓLAL(ε, t)]

+ Re

[
ΓL

∑

β

fβ(ε)Aβ(ε, t)Γβ A†
β(ε, t)

]}
. (11)

For the upward pulse with VL = VR = 0 for t < 0 and
VL = −VR = V for t > 0, ALU(ε) are

ALU(ε, t < 0) = Gr(ε),

ALU(ε, t > 0) = Gr(ε + VL) + eiVLt
∫ ∞

t
dt ′eiεt ′

Gr(t ′)

−
∫ ∞

t
dt ′ei(ε+VL)t ′

Gr(t ′). (12)

For the downward pulse with VL = −VR = V for t < 0 and
VL = VR = 0 for t > 0, ALD(ε, t) are

ALD(ε, t < 0) = Gr(ε + VL),

ALD(ε, t > 0) = Gr(ε) + e−iVLt
∫ ∞

t
dt ′ei(ε+VL)t ′

Gr(t ′)

−
∫ ∞

t
dt ′eiεt ′

Gr(t ′). (13)

The expressions for ARU and ARD can be obtained from
equations (12) and (13) by changing VL to VR.

In the small pulse bias VL limits we can expand AL(ε, t)
to the first order of VL as AL(ε, t) = AL(ε, 0) + VLA1

L(ε, t)
with A1

L expressed as

A1
LU(ε, t > 0) = it

∫ ∞

t
dt ′eiεt ′

Gr(t ′)

+ i
∫ t

0
dt ′eiεt ′

t ′Gr(t ′), (14)

and

A1
LD(ε, t > 0) = −it

∫ ∞

t
dt ′eiεt ′

Gr(t ′)

− i
∫ t

0
dt ′eiεt ′

t ′Gr(t ′). (15)

The current can also be expanded as IL(t) = IL(0) + VL XL(t)
with

XL(t) = − e

h̄

∫
dε

2π
Tr

{
2 fL(ε) Im[ΓLA1

L(ε, t)]
+ Re ΓL

∑

β

fβ(ε)[A1
β(ε, t)Γβ (Gr(ε))†

+ Gr(ε)Γβ(A1
β(ε, t))†]

}
, (16)

where XL(t) is the first-order expansion coefficient with
respect to the bias VL.

3. Numerical results and discussions

In the numerical calculation, we set h̄ = e = 1 and the
coupling � = �L +�R = 1 as an energy unit. The temperature
is set as zero except for the discussion about the temperature
effects. The system is in a steady state at t < 0 and the current
is time independent. At t = 0, the bias is abruptly turned on
(off) for the upward (downward) pulse case. After that, the
system begins to relax, and finally the system enters into a new
steady state. Thus in the following discussion we only plot the
current IL(t) and the related quantities for t > 0. To make
the physical picture clear, the two coupled QD levels can be
diagonalized into the decoupled antibonding (+) and bonding
(−) states with energy ε± = 1

2 [ε1 + ε2 ± √
(ε1 − ε2)2 + 4t2

c ].
The linewidth matrix corresponding to the two states coupled
to the α lead are, respectively, �α+ = �α

1 cos2 β and �α− =
�α

1 sin2 β , where β(t) = 1/2 tan−1[2tc/(ε1 − ε2)]. Therefore,
the DQD system is mapped onto a system of two independent
molecular states with band �α± connected to the leads.

First of all we study the case of weak interdot coupling
at tc = 0.01. The energy levels of the two QDs are set as
ε1 = ε2 = 0. Then, the bonding and antibonding states are at
ε− = −tc and ε+ = tc, respectively. Since tc is very small, the
two state levels can be approximately viewed as ε+ ≈ ε− = ε0.
For the small pulse bias V limit, the instantaneous current IL(t)
can be expanded as IL(t) = IL(0) + XL(t)VL. The first-order
expansion parameters XLU/D(t) of the currents ILU/D(t) versus
time t are plotted in figure 1(a). It is seen that the expanding
parameters XL(t) for the upward and downward pulses are
symmetric as XLU(t) = −XLD(t). The current ILU(t) and
ILD(t) responding to the upward and downward pulses are
also symmetric as shown in figure 1(b). As time t increases,
ILU/D(t) deviates from the initial value ILU/D(0). For the
upward (downward) pulse, the current increases (decreases)
and the device is gradually turned on (off). As a result, the
instantaneous current shows a clear increase (decrease) before
reaching the new steady state for the upward (downward)
pulse. It means that in the linear (small) bias regime, the
upward pulse is the reversal process of the downward pulse,
so that the turn-on time is the same as the turn-off time.

Figure 2 depicts the currents ILU and ILD versus time t
for various large pulse biases V . The current responses to the
upward and downward pulses are asymmetric at the large bias
V , which is quite different from the case of small bias. It is
seen that the decreasing process of the current ILD in the large
bias case is much stronger than that of the small bias case. In
this nonlinear regime, the upward and downward processes are
asymmetric and the turn-on time is much larger than the turn-
off time. What is more interesting is that the current ILU in
the large bias case oscillates with increasing time t , while the
amplitude of the oscillation decreases and finally vanishes. The
oscillation frequency and period depend on the bias V , which
can be expressed as ω = |V − ε0| and T = 2π/|V − ε0|,
respectively. The damping of the oscillation amplitude is due
to the lead–dot coupling �, and the damping time is about
1.0(2π/�). This oscillation does not appears in the small bias
case, because the frequency is too small and the current cannot
show the oscillations before the system is completely relaxed.

3
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Figure 1. The first-order expansion coefficients XLU(t) and XLD(t) (a) and the currents ILU(t) (blue) ILD(t) (red) (b) versus time t for the
upward and downward pulse bias cases. The parameters are tc = 0.01 and V = 0.1.

Figure 2. The currents ILU(t) (blue) and ILD(t) (red) versus time t for weak interdot coupling tc = 0.01 at different biases of (a) V = 5,
(b) V = 10, (c) V = 15, and (d) V = 20.

With increasing V , the oscillation frequency also increases,
and thus the current oscillations can appear clearly.

Next, we discuss the case of strong interdot coupling.
Figure 3 shows the time evolution of the current ILU for various
large interdot couplings. It is seen that the currents present the
typical quantum beat character, which is absent in the weak
interdot coupling case. In particular, more beats appear in
the current as tc increases. The quantum beating is caused
by interference between tunneling electrons through the two
QDs. In this T-shaped DQD structure, there are two paths for
tunneling electrons. One is the N–QD1–N path and the other
is N–QD1–QD2–QD1–N. In the presence of strong interdot
coupling tc, the frequency ω becomes dependent on interdot
coupling as ω± = |V − ε0 ± tc|. The total current can be
viewed as being composed of two components: I+ and I−
contributed by electrons tunneling through the channels ε+ and

ε−. Furthermore, I+ and I− oscillate with different frequencies
of ω+ and ω+. Therefore, the interference of these two current
components results in quantum beats with beat frequency given
by |ω+ − ω−| = 2tc. Since both I+ and I− start from zero
at t = 0, the total current reaches its first node soon due to
this strong initial condition. Only part of the quantum beat
appears in the current before the first node. After this, the
whole period of the quantum beats can appear in the current.
The interplay between oscillation amplitudes and decay rates
gives rise to other nodes in the total current. The quantum
beats cannot be seen for weak tc because the frequencies of
the two components of the currents almost coincide. This
means that the appearance of the quantum beats in the currents
can be tuned by the interdot coupling strength tc. It is also
seen that the relaxation of the quantum beats is different for
different interdot couplings, since the beat frequency depends

4
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Figure 3. The currents ILU(t) versus time t at V = 15 for different interdot couplings of (a) tc = 0.25, (b) tc = 0.5, (c) tc = 1.0 and
(d) tc = 1.5.

(a) (b)

(c) (d)

Figure 4. The currents ILU(t) versus time t at tc = 0.5 and V = 15 for different energy differences of (a) ε = 0.1, (b) ε = 0.2,
(c) ε = 1.0 and (d) ε = 2.0.

on tc as mentioned above. This is quite different from the case
of quantum ringing, in which the relaxation only depends on
the coupling strength �.

The energy difference ε between QD1 and QD2 also has
a distinct influence on the quantum beats. Figure 4 shows the
current ILU versus time t for various ε. With increasing ε,
the quantum beat behavior is greatly suppressed. The current
only shows quantum ringing for large enough ε. The reason
for this is related to the linewidth �+ and �− of the antibonding
and bonding states. When ε increases from zero, β deviates
from π/4. Therefore, �− and �+ become inequivalent, which
greatly suppresses the interference between the two molecular
states. Then the quantum beat is destroyed by the large

energy difference. In figure 5, the currents ILU and ILD versus
time t for various pulsed biases V are plotted. As the bias
V increases, the current ILU oscillates much more rapidly
and more quantum ringing appears. The reason is that the
frequency of the quantum ringing is proportional to the bias V
as mentioned above. However, the period of the quantum beat
does not change, because the frequency of the quantum beat
depends on the interdot coupling tc but not on the bias. For the
current ILD, the decreasing process becomes much stronger for
the large bias than that for the small bias.

Finally, we discuss the effects of the temperature kBT
on the quantum beat. In figure 6, we plot the influence of
various temperatures on the quantum coherent beat of the

5
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(a) (b)

(c) (d)

Figure 5. The currents ILU(t) (blue) and ILD(t) (red) versus time t for strong interdot coupling tc = 0.5 at different biases of (a) V = 5,
(b) V = 10, (c) V = 15 and (d) V = 20.

(a) (b)

(c) (d)

Figure 6. The currents ILU(t) versus time t at tc = 0.5 and V = 15 for different temperatures (a) kBT = 0.01, (b) kBT = 0.1, (c) kBT = 0.2
and (d) kBT = 0.5.

currents. Coherent quantum beats can be clearly seen for
both kBT = 0.01 and 0.1, but the beats are only residually
observed for kBT = 0.2. As kBT increases to 0.5, the quantum
beat behavior tends to disappear in the current. When the
temperature increases to kBT ∼ �, the coherent oscillations of
the quantum ringing and beats of the current are both strongly
suppressed. The reason for this is related to the coherence loss
caused by the high temperature. In general, quantum coherence
is established at temperatures lower than the coupling strength
as kBT 	 �. At this low temperature, the coherent resonant
tunneling dominates and the electrons keep the coherence.
The oscillation period of the current is much smaller than the

damping time which depends only on the coupling strength.
Then the current clearly shows the coherent oscillation. When
the temperature increases to become comparable with �,
the inelastic tunneling makes a large contribution, and the
tunneling process becomes incoherent [25]. At the same time,
the QD energy level is broadened by the high temperature and
the damping time is greatly decreased. Thus the oscillations of
the current I+ and I− are suppressed by the high temperature.
As a result, both the quantum ringing and beats of the total
current can be washed out as the temperature increases to
exceed the coupling strength [12].

6
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4. Conclusion

The quantum coherent ringing and beat of the current flowing
through a T-shaped double quantum dot are theoretically
studied. The time-dependent transport is calculated via a
nonequilibrium Green’s function in the transient after a bias
voltage is turned on or off. The quantum coherent ringing and
beat can be controlled by the interdot coupling and the pulsed
bias. In the weak interdot coupling case, quantum ringing
appears in the current only at large bias. The frequency of
the quantum ringing increases as the bias increases. In the
strong interdot coupling case, quantum beating appears in the
current at large bias, but is absent in the weak interdot coupling
case. With increasing interdot coupling, more quantum beats
appear, since the beat frequency depends on the interdot
coupling. Furthermore, the quantum beat behavior can be
greatly suppressed by the large energy difference between the
two quantum dots. Additionally, quantum ringing and quantum
beats tend to disappear at high temperature.
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